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Two problems related to APSP
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The diameter of a graph is the maximum length of a shortest path between u,v € V.
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O(n?~1/3) time using Voronoi diagrams.
Cabello [SODA '17]
Fine-grained reduction: if O(m?~¢) |Gawrychowski, Kaplan, Mozes, Sharir, Weimann [SODA '18]

O(mn) time by repeated BFS.

time solution for 2-DIAMETER, Kj,-minor-free graphs

; 2—€Y\ ¢; ~
OV could be solved in O(n“~¢) time. O(n2~1/Ch=1)) time using VC dimension.

This would mean SETH is falsel Ducoffe, Habib, Viennot [SODA "20]
Roddity, Vassilevska-Williams [STOC '13] Le, Wulff-Nilsen [SODA "24]
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Prior work on exact distance oracles with fast query time

General graphs

O(n?) space. Precompute APSP.
Q(n?) space via set intersection (even for unweighted). [Cohen, Porat 2010]
Planar graphs (Voronoi diagrams)

O(n®/3) space. Cohen-Addad, Dahlgaard, Wulff-Nilsen [FOCS '17]
O(n3/?) space. Gawrychowski, Mozes, Weimann, Wulff-Nilsen. [SODA '18]
O(n**t°(M)) space. Charalampopoulos, Gawrychowski, Mozes, Weimann [STOC '19]
Kp-minor-free graphs (Bounded V/C dimension)

O(n?~1/(2h=4)) space (unweighted). Le, Wulff-Nilsen [SODA '24]
O(n?~1/(4h=1)) space (real weights). NEW!
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VC Dimension in Graphs

Definition: A ball B(u,r) is the set of vertices distance < r from u € V.
Let B denote the set of all balls, i.e. B={B(u,r)|ue V,re]|n]}.
The distance VC dimension of G is VCDim(B).
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Bounded distance VC dimension graphs

’ Theorem. If G is planar, then VCDim(B) < 4. ‘
Chepoi, Estellon, Vaxes [DCG '07]

| Theorem. If G is Kj-minor-free, then VCDim(B) < h—1. |

Bousquet, Thomassé [Disc. Math. '15]

’ Theorem. If G is a unit disk intersection graph, then VCDim(B) < 4. ‘
Chang, Gao, Le [SoCG '24]
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Proof of bounded VC dimension

Example: Kj-minor free graph. Suppose distance VC dimension was 4. Minimal balls.

t12 b1 {v4,to4,t34}

{va,tas}

U3
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Non-crossing of ball paths

Case 1: Share both Case 2: Share one Case 3: Share none
tij top t12 tog ty;

as a1

\ CL2

V; ’Uj U1 V2 VEk (%1 V2

d(tlj, Vl) + d(tgq, V2) —=ayt+a+aztag = (31 + 84) + (32 + 33) > d(th, V2) + d(tlj, V1)

10



VC Dimension in Graphs

Definition: A ball B(u,r) is the set of vertices distance < r from u € V.

Let B denote the set of all balls, i.e. B={B(u,r)|ue V,re]|n]}.

Theorem. If G is K,-minor-free, the set B has VC dimension at most h — 1. ‘

11
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A Different View

Xa(u) :={(i,0) | 6 € A, d(u,s;) <d(u,sp) + I}
Xa i ={Xa(v) |ue V}

Theorem. [Le-Waulff-Nilsen SODA '24]
If G is Kp-minor-free, VCDIim(Xa) < h—1.

Let A ={-1,0,+3}.
Xa(u) encodes information about multiballs!

Let MBa denote multiballs of arbitrary radii.

Theorem. [Karczmarz-Z. SODA '25]
If G is Ky-minor-free, PDim(MBp) < h— 1.

B(u,r +3)
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Why is this useful?

| Theorem. [Le-Wulff-Nilsen SODA '24] If G is Ky-minor-free, VCDim(Xa) < h—1. |

Theorem. [Sauer's Lemma] If VCDim(X,R) = d, then |R| < O(|X|%)

Implies number of vectors is at most (2 - Diameter(G) - |Outer face|)?.

440 5 _
3L Ly
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Warm up: A simple distance oracle
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BFS: O(n?//r) distances

d(u, so)
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An algorithmic template




Basic Algorithmic Template

1. r-division of G into O(n/r) pieces of size O(r) with O(n/+/r) boundary.
2. Store patterns to boundary of each piece by BFS using O(n?//r) space.
3. Store rO() relevant patterns per piece and other precomputation (e.g. distances

of patterns to vertices). Overall space O(n/r) - O(ro(l)) = O(nro(l))_
Total space: O(n?/+/r + nrPM)) = O(n>=¢)
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2. Store patterns to boundary of each piece by BFS using O(n?//r) space.

3. Store rO() relevant patterns per piece and other precomputation (e.g. distances
of patterns to vertices). Overall space O(n/r)- O(rM) = O(nr®M),

Total space: O(n?/\/r + nr®1)) = O(n?~¢)
Applications of this template for K,-minor-free graphs

1. Subquadratic time diameter, eccentricities (farthest vertex from each vertex)
2. Subquadratic space distance oracles in digraphs

3. Subquadratic space distance oracle in real-weighted digraphs. NEW!

4. Subquadratic space reachability oracles in digraphs NEW!
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Basic Algorithmic Template

1. r-division of G into O(n/r) pieces of size O(r) with O(n/+/r) boundary.

2. Store patterns to boundary of each piece by BFS using O(n?//r) space.

3. Store rO() relevant patterns per piece and other precomputation (e.g. distances
of patterns to vertices). Overall space O(n/r)- O(rM) = O(nr®M),

Total space: O(n?/\/r + nr®1)) = O(n?~¢)
Applications of this template for K,-minor-free graphs

1. Subquadratic time diameter, eccentricities (farthest vertex from each vertex)
Subquadratic space distance oracles in digraphs

Subquadratic space distance oracle in real-weighted digraphs. NEW!
Subquadratic space reachability oracles in digraphs NEW!

Subquadratic space decremental reachability oracles in digraphs NEW!

AN Sl S A
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Real-weighted distance oracle




Technical Challenge

Xa(u) :={(i,0) | 6 € A,d(u,s;) <d(u,sp) + I} Xp :={Xa(u) |ue V}

| Theorem. [Le-Wulff-Nilsen SODA '24] If G is K,-minor-free, VCDim(Xa) < h—1. |
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Technical Challenge

Xa(u) :={(i,0) | 6 € A,d(u,s;) <d(u,sp) + I} Xp :={Xa(u) |ue V}

| Theorem. [Le-Wulff-Nilsen SODA '24] If G is K,-minor-free, VCDim(Xa) < h—1. |

Theorem. [Sauer's Lemma] If VCDim(X,R) = d, then |R| < O(|X]9)

Implies number of vectors is at most (|A| - |Outer face|)?.
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Is u — s15 — v shorter than v — sy — v?

d(u, s15) + d(s15,v) < d(u, so) + d(sg,v)
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Is u — s15 — v shorter than v — sy — v?

d(u7 315) + d(8157 U) S d(u7 So) =+ d(so’ ’U)
if and only if

d(u, s15) — d(u, so) < d(sg,v) — d(s15,v)
“Fredman’s trick” [Fredman ’76]

Ao = {d(s0,v) = d(si,v) | v € P}
A0l = 0(rO)

Set system of Le-Wulff-Nilsen [SODA ’24]:
Xa(u):={(i,0) | 6§ € A,d(u,s;) — d(u,s0) < 0}
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X, (u) encodes vertices with shorter paths!

SHORTER( :=
{si | w = s; = v shorter than u — sp — v}

Ao = {d(s0,v) = d(si,v) | v € P}
A0l = 0(rO)

Set system of Le-Wulff-Nilsen [SODA ’24]:
Xa(u):={(i,0) | 6§ € A,d(u,s;) — d(u,s0) < 0}
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X, (u) encodes vertices with shorter paths!

SHORTER( :=
{si | w = s; = v shorter than u — sp — v}

Algorithm: Query a random s; € SHORTERg
then repeat with SHORTER;.

Ao = {d(s0,v) = d(si,v) | v € P}
Ao = 0(rO)

Set system of Le-Wulff-Nilsen [SODA ’24]:
Xa(u):={(i,0) | 6§ € A,d(u,s;) — d(u,s0) < 0}
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X, (u) encodes vertices with shorter paths!

SHORTER( :=
{si | w = s; = v shorter than u — sp — v}

Algorithm: Query a random s; € SHORTERg

then repeat with SHORTER;.

Ao = {d(s0,v) = d(si,v) | v € P}
Ao = 0(rO)

Set system of Le-Wulff-Nilsen [SODA ’24]:
Xa(u):={(i,0) | 6§ € A,d(u,s;) — d(u,s0) < 0}
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s
? X, (u) encodes vertices with shorter paths!

S4 SHORTER( :=
{si | w = s; = v shorter than u — sp — v}
Algorithm: Query a random s; € SHORTERg
SHORTERg then repeat with SHORTER;.
Ay ={d(so,v) — d(s;,v) | v € P}
513

|A| = O(r°W)

Set system of Le-Wulff-Nilsen [SODA ’24]:
Xa(u):={(i,0) | 6§ € A,d(u,s;) — d(u,s0) < 0}
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Analysis of distance oracle

Space analysis

Every vertex v € V stores O(y/r) pointer to Xa, for each s; € §P for all P.

Space needed to store Xa, is O(r®M) per piece, O(nr®M)) across all pieces.

Space needed to store pointers from each vertex to Xa. for each piece is O(n?/+/r).

Total space is O(n?//r + nroM).
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Analysis of distance oracle

Space analysis

Every vertex v € V stores O(y/r) pointer to Xa, for each s; € §P for all P.

Space needed to store Xa, is O(r®M) per piece, O(nr®M)) across all pieces.

Space needed to store pointers from each vertex to Xa. for each piece is O(n?/+/r).
Total space is O(n?//r + nroM).

Query runtime analysis

Each step ~ halves SHORTER;, expected # of steps is O(log |[0P|) = O(log n).

Derandomization is possible.
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New even for planar digraphs!.
e In unweighted digraphs: subquadratic constructions of exact distance oracles,

vertex eccentricities, and Weiner index, using string algorithms.
Open Question: What else can we do in graphs with bounded distance VC
dimension? Subquadratic time real-weighted diameter?
Open Question 2: Using other set systems of bounded VC dimension?

(e.g. VC dimension in general graphs Kleinberg [FOCS '00]) 20



What is the set system Xa(u)?




A Different View

Xa(u) :={(i,0) |0 € A,d(u,s;) — d(u,sp) <0}
Xp ={Xa(v) |ue V}

Theorem. [Le-Waulff-Nilsen SODA '24]
If G is Kp-minor-free, VCDIim(Xa) < h—1.
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A Different View

Xa(u) :={(i,0) | 6 € A, d(u,s;) <d(u,sp) + I}
Xa i ={Xa(v) |ue V}

Theorem. [Le-Waulff-Nilsen SODA '24]
If G is Kp-minor-free, VCDIim(Xa) < h—1.

Let A ={-1,0,+3}.
Xa(u) encodes information about multiballs!

Let MBa denote multiballs of arbitrary radii.

Theorem. [Karczmarz-Z. SODA '25]
If G is Ky-minor-free, PDim(MBp) < h— 1.

B(u,r +3)
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The Power of Multiballs

Why Multiballs?

e Generalizes both the ball set system B and the distance encoding set system Xa.
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The Power of Multiballs

Why Multiballs?

e Generalizes both the ball set system B and the distance encoding set system Xa.
e Proofs look exactly the same (using pseudodimension instead of VC dimension).
e A version of Sauer's lemma still holds (with |A|? factor).

e Proofs generalize better to digraphs! Improve VC dimension bound in digraphs
from h? [Le-Wulff-Nilsen '24] to h — 1!

| understand what MBA is!

22



Summary of results and open problems

e Exact distance oracles in real-weighted Kj-minor-free digraphs with O(log n)

query time and O(n2*1/(4h—1))

space.
e Improved understanding of the Xa, reducing VC dimension of directed
Kp-minor-free graphs to h — 1.
e Decremental reachability oracles with O(n?>~1/h) total update time.
New even for planar digraphs!.
e In unweighted digraphs: subquadratic constructions of exact distance oracles,

vertex eccentricities, and Weiner index, using string algorithms.
Open Question: What else can we do in graphs with bounded distance VC
dimension? Subquadratic time real-weighted diameter?
Open Question 2: Using other set systems of bounded VC dimension?
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