
Fully Scalable MPC Algorithms for Embedded Planar Graphs

Graph drawing for planar graph algorithms

Yi-Jun Chang (NUS) Da Wei Zheng (UIUC)

Jan 29, 2024

UIUC Theory Seminar Presented at SODA 2024

1



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

n vertices
m edges

Graph G = (V,E)

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

n vertices
m edges

Graph G = (V,E)

O(S) memory
per machine

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

n vertices
m edges

Graph G = (V,E)

O(S) memory
per machine

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

n vertices
m edges

Graph G = (V,E)

O(S) memory
per machine

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

...
...

...

...
...

...

n vertices
m edges

Graph G = (V,E)

O(m/S)machines

O(S) memory
per machine

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

...
...

...

...
...

...

n vertices
m edges

Graph G = (V,E)

O(m/S)machines

O(S) memory
per machine

Transmit O(S)
per round

Minimize rounds

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

...
...

...

...
...

...

n vertices
m edges

Graph G = (V,E)

O(m/S)machines

O(S) memory
per machine

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

...
...

...

...
...

...

n vertices
m edges

Graph G = (V,E)

O(m/S)machines

O(S) memory
per machine

connectivity
MST
SSSP

st-max flow
min cut

2



Massively parallel computing with graphs

Definition
We say an algorithm is fully scalable if it works with S = nδ for any δ > 0.

...
...

...

...
...

...

n vertices
m edges

Graph G = (V,E)

O(m/S)machines

O(S) memory
per machine

connectivity
MST
SSSP

st-max flow
min cut

2



A bottleneck: The 1-vs-2 cycle conjecture

...
...

...

...
...

... O(m/S)machines

O(S) memory
per machine

3



A bottleneck: The 1-vs-2 cycle conjecture

...
...

...

...
...

... O(m/S)machines

O(S) memory
per machine

n vertex
cycle

?

3



A bottleneck: The 1-vs-2 cycle conjecture

...
...

...

...
...

... O(m/S)machines

O(S) memory
per machine

n vertex
cycle

?

?

n
2 vertex

cycle

n
2 vertex
cycle

3



A bottleneck: The 1-vs-2 cycle conjecture

...
...

...

...
...

... O(m/S)machines

O(S) memory
per machine

n vertex
cycle

?

?

n
2 vertex

cycle

n
2 vertex
cycle

If S = O(n1−ε), then need Ω(log n) rounds.

3



A bottleneck: The 1-vs-2 cycle conjecture

...
...

...

...
...

... O(m/S)machines

O(S) memory
per machine

n vertex
cycle

?

?

n
2 vertex

cycle

n
2 vertex
cycle

If S = O(n1−ε), then need Ω(log n) rounds.

connectivity
MST
SSSP

st-max flow
min cut

3



This paper:

O(1)-round

fully scalable

algorithms!

4



Embedded planar graphs

5



Embedded planar graphs

(x1, y1)

(x2, y2)

(x3, y3) . . .

5



Embedded planar graphs

5



Embedded planar graphs

5



Embedded planar graphs

5



Embedded planar graphs

5



Overcoming the 1-vs-2 cycle conjecture

Problem Total space
Memory

per machine Source

Embedded
planar
graphs

Connected Components
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

Minimum Spanning Tree
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

O(1)-approx. SSSP O(n) n2/3+Ω(1) [HT23]

(1 + ε)-approx. SSSP O(n) nδ New!

(1 + ε)-approx. APSP O(n2) nδ New!

(1 + ε)-approx. global min cut O(n) nδ New!

(1 + ε)-approx. st-max flow O(n) nδ New!

6



Overcoming the 1-vs-2 cycle conjecture

Problem Total space
Memory

per machine Source

Embedded
planar
graphs

Connected Components
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

Minimum Spanning Tree
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

O(1)-approx. SSSP O(n) n2/3+Ω(1) [HT23]

(1 + ε)-approx. SSSP O(n) nδ New!

(1 + ε)-approx. APSP O(n2) nδ New!

(1 + ε)-approx. global min cut O(n) nδ New!

(1 + ε)-approx. st-max flow O(n) nδ New!

6



Overcoming the 1-vs-2 cycle conjecture

Problem Total space
Memory

per machine Source

Embedded
planar
graphs

Connected Components
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

Minimum Spanning Tree
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

O(1)-approx. SSSP O(n) n2/3+Ω(1) [HT23]

(1 + ε)-approx. SSSP O(n) nδ New!

(1 + ε)-approx. APSP O(n2) nδ New!

(1 + ε)-approx. global min cut O(n) nδ New!

(1 + ε)-approx. st-max flow O(n) nδ New!

6



Beyond planar graphs

Problem Total space
Memory

per machine Source

2D
Euclidean
MST

(1 + ε)-approx. O(n) nδ [ANOY14]

Exact O(n) n2/3+Ω(1) [HT23]

Exact O(n) nδ New!

Edit
Distance

(3 + ε)-approx. Õ(n(9−4δ)/5) nδ [BGS21]

(1 + ε)-approx. Õ(n2−δ) nδ [HSS19]

(1 + ε)-approx. weighted Õ(n2−δ) nδ New!

7



Beyond planar graphs

Problem Total space
Memory

per machine Source

2D
Euclidean
MST

(1 + ε)-approx. O(n) nδ [ANOY14]

Exact O(n) n2/3+Ω(1) [HT23]

Exact O(n) nδ New!

Edit
Distance

(3 + ε)-approx. Õ(n(9−4δ)/5) nδ [BGS21]

(1 + ε)-approx. Õ(n2−δ) nδ [HSS19]

(1 + ε)-approx. weighted Õ(n2−δ) nδ New!

7



Beyond planar graphs

Problem Total space
Memory

per machine Source

2D
Euclidean
MST

(1 + ε)-approx. O(n) nδ [ANOY14]

Exact O(n) n2/3+Ω(1) [HT23]

Exact O(n) nδ New!

Edit
Distance

(3 + ε)-approx. Õ(n(9−4δ)/5) nδ [BGS21]

(1 + ε)-approx. Õ(n2−δ) nδ [HSS19]

(1 + ε)-approx. weighted Õ(n2−δ) nδ New!

7



The framework of Holm and Tětek

8



9



9



9



9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

Planar s-divisions

O(s) vert. / region

O(r/s) regions

O(
√
s) vert. / bound.

O(1) holes

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

Planar s-divisions

O(s) vert. / region

O(r/s) regions

O(
√
s) vert. / bound.

O(1) holes

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

Planar s-divisions

O(s) vert. / region

O(r/s) regions

O(
√
s) vert. / bound.

O(1) holes

Cutting-division

O
(
ns
r

)
edges / region

O(r/s) regions

O
(

n
√
s

r

)
edges / bound.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

Planar s-divisions

O(s) vert. / region

O(r/s) regions

O(
√
s) vert. / bound.

O(1) holes

Cutting-division

O
(
ns
r

)
edges / region

O(r/s) regions

O
(

n
√
s

r

)
edges / bound.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

Planar s-divisions

O(s) vert. / region

O(r/s) regions

O(
√
s) vert. / bound.

O(1) holes

Cutting-division

O
(
ns
r

)
edges / region

O(r/s) regions

O
(

n
√
s

r

)
edges / bound.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

Planar s-divisions

O(s) vert. / region

O(r/s) regions

O(
√
s) vert. / bound.

O(1) holes

Cutting-division

O
(
ns
r

)
edges / region

O(r/s) regions

O
(

n
√
s

r

)
edges / bound.

9



(1/r)-cutting

O(r) trapezoids

n/r edges / trap.

Cutting graph

O(r) vert. and edges

Planar

Planar s-divisions

O(s) vert. / region

O(r/s) regions

O(
√
s) vert. / bound.

O(1) holes

Cutting-division

O
(
ns
r

)
edges / region

O(r/s) regions

O
(

n
√
s

r

)
edges / bound.

9



Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



New framework:

More recursion + graph drawing!

11



New framework:

More recursion + graph drawing!

11



?

12



?

12



?

12



12



12



12



12



12



12



Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!

13



Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!

13



Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!

13



Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!

13



Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!

13



Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!

13



Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!

13



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical issues (cont.)

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

The boundary of a region is a complex polygon of size O(nδ/3) with O(1) holes

• Connecting two points may need O(nδ/3) bends VERY BAD!

• Solution: Draw subproblem in a triangle w/ triangular holes

15



Technical issues (cont.)

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

The boundary of a region is a complex polygon of size O(nδ/3) with O(1) holes

• Connecting two points may need O(nδ/3) bends VERY BAD!

• Solution: Draw subproblem in a triangle w/ triangular holes

15



Technical issues (cont.)

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

The boundary of a region is a complex polygon of size O(nδ/3) with O(1) holes

• Connecting two points may need O(nδ/3) bends VERY BAD!

• Solution: Draw subproblem in a triangle w/ triangular holes

15



Technical issues (cont.)

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

The boundary of a region is a complex polygon of size O(nδ/3) with O(1) holes

• Connecting two points may need O(nδ/3) bends VERY BAD!

• Solution: Draw subproblem in a triangle w/ triangular holes

P
Q

15



Advantages of triangular boundaries

16



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

17



Compatible triangulations

h holes ⇒ O(h2) bends

17



Technical issues in the gluing step (cont.)

We need to join these triangles together.

Subdivision may have nested holes (can be nested O(nδ/3) deep).

• Need to join boundaries of adjacent subproblems together in parallel.

• Solution: Parallel routing technique + a scaffold graph.

18



Technical issues in the gluing step (cont.)

We need to join these triangles together.

Subdivision may have nested holes (can be nested O(nδ/3) deep).

• Need to join boundaries of adjacent subproblems together in parallel.

• Solution: Parallel routing technique + a scaffold graph.

18



Technical issues in the gluing step (cont.)

We need to join these triangles together.

Subdivision may have nested holes (can be nested O(nδ/3) deep).

• Need to join boundaries of adjacent subproblems together in parallel.

• Solution: Parallel routing technique + a scaffold graph.

18



Technical issues in the gluing step (cont.)

We need to join these triangles together.

Subdivision may have nested holes (can be nested O(nδ/3) deep).

• Need to join boundaries of adjacent subproblems together in parallel.

• Solution: Parallel routing technique + a scaffold graph.

18



Routing between curves in parallel

19



Routing between curves in parallel

p
p′ p′′

f(p)
f(p′)

f(p′′)

Q

P

20



Routing between curves in parallel

p
p′ p′′

f(p)
f(p′)

f(p′′)

x

Q

P

20



Routing between curves in parallel

p
p′ p′′

f(p)
f(p′)

f(p′′)

x

Q

P

20



Routing between curves in parallel

p
p′ p′′

f(p)
f(p′)

f(p′′)

x
B(x, ε)

Q

P

20



Routing between curves in parallel

p
p′ p′′

f(p)
f(p′)

f(p′′)
Q

P

x
Tx

f(p1)

f(p2)

p1

p2

ε

ε

21



Scaffold construction

22



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Redraw!

23



Scaffold construction for a polygon

P
24



Scaffold construction for a polygon

P
24



Scaffold construction for a polygon

P
24



Scaffold construction for a polygon

P
24



Inside and outside scaffolding

25



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

26



Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality

27



Conclusion

Open questions in the fully scalable regime

• EMST in higher dimensions?

(O(1)-approx in O(log log n) [JMNZ23]

• Approximate diameter and radius?

• Exact solutions to distance-based problems?

• Geometric intersection graphs?

• Planarity testing and graph drawing?

28



Conclusion

Open questions in the fully scalable regime

• EMST in higher dimensions? (O(1)-approx in O(log log n) [JMNZ23]

• Approximate diameter and radius?

• Exact solutions to distance-based problems?

• Geometric intersection graphs?

• Planarity testing and graph drawing?

28



Conclusion

Open questions in the fully scalable regime

• EMST in higher dimensions? (O(1)-approx in O(log log n) [JMNZ23]

• Approximate diameter and radius?

• Exact solutions to distance-based problems?

• Geometric intersection graphs?

• Planarity testing and graph drawing?

28



Conclusion

Open questions in the fully scalable regime

• EMST in higher dimensions? (O(1)-approx in O(log log n) [JMNZ23]

• Approximate diameter and radius?

• Exact solutions to distance-based problems?

• Geometric intersection graphs?

• Planarity testing and graph drawing?

28



Conclusion

Open questions in the fully scalable regime

• EMST in higher dimensions? (O(1)-approx in O(log log n) [JMNZ23]

• Approximate diameter and radius?

• Exact solutions to distance-based problems?

• Geometric intersection graphs?

• Planarity testing and graph drawing?

28



Conclusion

Open questions in the fully scalable regime

• EMST in higher dimensions? (O(1)-approx in O(log log n) [JMNZ23]

• Approximate diameter and radius?

• Exact solutions to distance-based problems?

• Geometric intersection graphs?

• Planarity testing and graph drawing?

28



Thank you for listening

P
Q

29



References

Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.

Parallel algorithms for geometric graph problems.

In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583.

ACM, 2014.

Mahdi Boroujeni, Mohammad Ghodsi, and Saeed Seddighin.

Improved MPC algorithms for edit distance and Ulam distance.

IEEE Trans. Parallel Distributed Syst., 32(11):2764–2776, 2021.

Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan.

Almost-linear ε-emulators for planar graphs.

In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,

June 20 - 24, 2022, pages 1311–1324. ACM, 2022.

MohammadTaghi Hajiaghayi, Saeed Seddighin, and Xiaorui Sun.

Massively parallel approximation algorithms for edit distance and longest common subsequence.

In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,

California, USA, January 6-9, 2019, pages 1654–1672. SIAM, 2019.

Jacob Holm and Jakub Tětek.

Massively parallel computation on embedded planar graphs.

In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,

Florence, Italy, January 22-25, 2023, pages 4373–4408. SIAM, 2023.

Rajesh Jayaram, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong.

Massively parallel algorithms for high-dimensional euclidean minimum spanning tree.

CoRR, abs/2308.00503, 2023.
30


