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Massively parallel computing with graphs

Definition
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This paper:

O(1)-round

fully scalable

algorithms!
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Embedded planar graphs
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Overcoming the 1-vs-2 cycle conjecture

Problem Total space
Memory

per machine Source

Embedded
planar
graphs

Connected Components
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

Minimum Spanning Tree
O(n) n2/3+Ω(1) [HT23]

O(n) nδ New!

O(1)-approx. SSSP O(n) n2/3+Ω(1) [HT23]

(1 + ε)-approx. SSSP O(n) nδ New!

(1 + ε)-approx. APSP O(n2) nδ New!

(1 + ε)-approx. global min cut O(n) nδ New!

(1 + ε)-approx. st-max flow O(n) nδ New!
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Beyond planar graphs

Problem Total space
Memory

per machine Source

2D
Euclidean
MST

(1 + ε)-approx. O(n) nδ [ANOY14]

Exact O(n) n2/3+Ω(1) [HT23]

Exact O(n) nδ New!

Edit
Distance

(3 + ε)-approx. Õ(n(9−4δ)/5) nδ [BGS21]

(1 + ε)-approx. Õ(n2−δ) nδ [HSS19]

(1 + ε)-approx. weighted Õ(n2−δ) nδ New!
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The framework of Holm and Tětek
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Picking the parameters - Take 1 [Holm Tětek ’23]

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.
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O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Local space usage for (1/r)-cutting: O(r).

• Local space usage for region after s-division: O(ns/r).

• Local space usage for after merging boundary graphs: O(n/
√
s).

Space usage: O(ns/r + n/
√
s + r). Choose s = r2/3 and r = n1/2 for S = O(n3/4).

Can improve to S = n2/3+Ω(1) by using some recursion.

10



Picking the parameters - Take 1 [Holm Tětek ’23]
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Picking the parameters - Take 2 (S = nδ)

O(r/s) regions O
(
ns
r

)
edges / region O

(
n
√
s

r

)
edges / boundary

• Need to set r ≤ S = nδ in order to compute planar s-division (on one machine)

• Need to set s ≤ r , choose s = r2/3 = n2δ/3.

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges → Graph with O(n1−δ/3) edges.

Iterate this until graph is small!
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Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical challenges

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O

(
n1−2δ/3

)
edges / boundary

Technical Challenges

• The number of boundary edges is large O(n1−2δ/3)

• Solution: Return on multiple machines

• Base case?

• Solution: Graph drawing!

• Precision issues?

14



Technical issues (cont.)

O(nδ/3) regions O
(
n1−δ/3

)
edges / region O
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The boundary of a region is a complex polygon of size O(nδ/3) with O(1) holes

• Connecting two points may need O(nδ/3) bends VERY BAD!

• Solution: Draw subproblem in a triangle w/ triangular holes
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Advantages of triangular boundaries

16



Compatible triangulations
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Compatible triangulations

h holes ⇒ O(h2) bends
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Technical issues in the gluing step (cont.)

We need to join these triangles together.

Subdivision may have nested holes (can be nested O(nδ/3) deep).

• Need to join boundaries of adjacent subproblems together in parallel.

• Solution: Parallel routing technique + a scaffold graph.
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Routing between curves in parallel
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Routing between curves in parallel
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Scaffold construction
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Scaffold construction (First attempt)

The scaffold has size O(nδ/3) < S so can be stored (and drawn) by all machines!

Faces are no longer triangles!
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Scaffold construction for a polygon
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Scaffold construction for a polygon
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Scaffold construction for a polygon
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Scaffold construction for a polygon

P
24



Inside and outside scaffolding
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Application to problems

• Connected components - keep track of components, replace with tree

• MST - replace with MST of subgraph (contract non-boundary)

• Euclidean MST - MST in Delaunay triangulation (O(1) rounds by [ANOY14])

• (1 + ε)-approx SSSP - replace with ε-emulator of Chang et al. [CKT22].

• (1 + ε)-approx APSP - Similar to SSSP

• (1 + ε)-approx weighted edit distance - DP is SSSP in a grid-like graph

• (1 + ε)-approx shortest cycle - recursive solution + recurse on ε-emulators

• (1 + ε)-approx flow/cut - shortest cycle + planar graph duality
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Conclusion

Open questions in the fully scalable regime

• EMST in higher dimensions?

(O(1)-approx in O(log log n) [JMNZ23]

• Approximate diameter and radius?

• Exact solutions to distance-based problems?

• Geometric intersection graphs?

• Planarity testing and graph drawing?
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Thank you for listening

P
Q
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