Fully Scalable MPC Algorithms for Embedded Planar Graphs

Graph drawing for planar graph algorithms

Yi-Jun Chang (NUS) Da Wei Zheng (UIUC) Jan 29, 2024

UIUC Theory Seminar

Presented at SODA 2024

Definition

We say an algorithm is **fully scalable** if it works with $S = n^{\delta}$ for any $\delta > 0$.

2

This paper: O(1)-round fully scalable algorithms!

Overcoming the 1-vs-2 cycle conjecture

			Memory	
	Problem	lotal space	per machine	Source
Embedded planar graphs	Connected Components	<i>O</i> (<i>n</i>)	$n^{2/3+\Omega(1)}$	[HT23]
	Minimum Spanning Tree	<i>O</i> (<i>n</i>)	$n^{2/3+\Omega(1)}$	[HT23]
	O(1)-approx. SSSP	<i>O</i> (<i>n</i>)	$n^{2/3+\Omega(1)}$	[HT23]

Overcoming the 1-vs-2 cycle conjecture

	Problem	Total space	Memory per machine	Source
Embedded planar graphs	Connected Components	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
		O(n)	n^{δ}	New!
	Minimum Spanning Tree	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
		O(n)	n^{δ}	New!
	O(1)-approx. SSSP	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
	$(1+arepsilon) ext{-approx.}$ SSSP	O(n)	n^{δ}	New!

Overcoming the 1-vs-2 cycle conjecture

		T . 1	Memory	C
	Problem	lotal space	per machine	Source
Embedded planar graphs	Connected Components	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
		O(n)	n^{δ}	New!
	Minimum Spanning Tree	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
		O(n)	n^{δ}	New!
	O(1)-approx. SSSP	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
	$(1+arepsilon) ext{-approx.}$ SSSP	O(n)	n^{δ}	New!
	$(1+arepsilon) ext{-approx.}$ APSP	$O(n^{2})$	n^{δ}	New!
	(1+arepsilon)-approx. global min cut	O(n)	n^{δ}	New!
	(1+arepsilon)-approx. st-max flow	O(n)	n^{δ}	New!

			Memory	
	Problem	Total space	per machine	Source
2D	(1+arepsilon)-approx.	O(n)	n^{δ}	[ANOY14]
Euclidean MST	Exact	O(n)	$n^{2/3+\Omega(1)}$	[HT23]

	Problem	Total space	Memory per machine	Source
2D Euclidean MST	(1+arepsilon)-approx.	O(n)	n^{δ}	[ANOY14]
	Exact	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
	Exact	O(n)	n^{δ}	New!

	Problem	Total space	Memory per machine	Source
2D Euclidean MST	(1+arepsilon)-approx.	O(n)	n^{δ}	[ANOY14]
	Exact	O(n)	$n^{2/3+\Omega(1)}$	[HT23]
	Exact	O(n)	n^{δ}	New!
Edit Distance	$(3 + \varepsilon)$ -approx.	$\widetilde{O}(n^{(9-4\delta)/5})$	n^{δ}	[BGS21]
	(1+arepsilon)-approx.	$\widetilde{O}(n^{2-\delta})$	n^{δ}	[HSS19]
	(1+arepsilon)-approx. weighted	$\widetilde{O}(n^{2-\delta})$	n^{δ}	New!

The framework of Holm and Tětek

(1/r)-cutting O(r) trapezoids n/r edges / trap.

(1/r)-cutting O(r) trapezoids n/r edges / trap.

(1/r)-cutting O(r) trapezoids n/r edges / trap.

(1/r)-cutting O(r) trapezoids n/r edges / trap.

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges Planar s-divisions O(r/s) regions O(s) vert. / region $O(\sqrt{s})$ vert. / bound. O(1) holes

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges Planar s-divisions O(r/s) regions O(s) vert. / region $O(\sqrt{s})$ vert. / bound. O(1) holes

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges Planar s-divisions O(r/s) regions O(s) vert. / region $O(\sqrt{s})$ vert. / bound. O(1) holes

Cutting-division

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges

Planar s-divisions

O(r/s) regions O(s) vert. / region $O(\sqrt{s})$ vert. / bound. O(1) holes

Cutting-division

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges Planar s-divisions O(r/s) regions O(s) vert. / region $O(\sqrt{s})$ vert. / bound.

O(1) holes

Cutting-division

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges Planar s-divisions O(r/s) regions

O(s) vert. / region $O(\sqrt{s})$ vert. / bound. O(1) holes

Cutting-division

O(r/s) regions $O\left(\frac{ns}{r}\right)$ edges / region $O\left(\frac{n\sqrt{s}}{r}\right)$ edges / bound.

(1/r)-cutting O(r) trapezoids n/r edges / trap. Cutting graph Planar O(r) vert. and edges Planar s-divisions O(r/s) regions O(s) vert. / region $O(\sqrt{s})$ vert. / bound. O(1) holes **Cutting-division**

O(r/s) regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(\frac{n\sqrt{s}}{r}\right)$$
 edges / boundary

O(r/s) regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(\frac{n\sqrt{s}}{r}\right)$$
 edges / boundary

$$O(r/s)$$
 regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(rac{n\sqrt{s}}{r}
ight)$$
 edges / boundary

• Local space usage for (1/r)-cutting: O(r).

$$O(r/s)$$
 regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(\frac{n\sqrt{s}}{r}\right)$$
 edges / boundary

- Local space usage for (1/r)-cutting: O(r).
- Local space usage for region after s-division: O(ns/r).

$$O(r/s)$$
 regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(rac{n\sqrt{s}}{r}
ight)$$
 edges / boundary

- Local space usage for (1/r)-cutting: O(r).
- Local space usage for region after s-division: O(ns/r).
- Local space usage for after merging boundary graphs: $O(n/\sqrt{s})$.

$$O(r/s)$$
 regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(\frac{n\sqrt{s}}{r}\right)$$
 edges / boundary

- Local space usage for (1/r)-cutting: O(r).
- Local space usage for region after s-division: O(ns/r).
- Local space usage for after merging boundary graphs: $O(n/\sqrt{s})$.

Space usage: $O(ns/r + n/\sqrt{s} + r)$. Choose $s = r^{2/3}$ and $r = n^{1/2}$ for $S = O(n^{3/4})$.

$$O(r/s)$$
 regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(\frac{n\sqrt{s}}{r}\right)$$
 edges / boundary

- Local space usage for (1/r)-cutting: O(r).
- Local space usage for region after s-division: O(ns/r).
- Local space usage for after merging boundary graphs: $O(n/\sqrt{s})$.

Space usage: $O(ns/r + n/\sqrt{s} + r)$. Choose $s = r^{2/3}$ and $r = n^{1/2}$ for $S = O(n^{3/4})$.

Can improve to $S = n^{2/3 + \Omega(1)}$ by using some recursion.

New framework:

New framework: More recursion + graph drawing!

Picking the parameters - Take 2 ($S = n^{\delta}$)

O(r/s) regions $O\left(\frac{ns}{r}\right)$ edges / region

$$O\left(\frac{n\sqrt{s}}{r}\right)$$
 edges / boundary

• Need to set $r \leq S = n^{\delta}$ in order to compute planar *s*-division (on one machine)

- Need to set $r \leq S = n^{\delta}$ in order to compute planar *s*-division (on one machine)
- Need to set $s \le r$, choose $s = r^{2/3} = n^{2\delta/3}$.

- Need to set $r \leq S = n^{\delta}$ in order to compute planar *s*-division (on one machine)
- Need to set $s \le r$, choose $s = r^{2/3} = n^{2\delta/3}$.

 $O(n^{\delta/3})$ regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

- Need to set $r \leq S = n^{\delta}$ in order to compute planar *s*-division (on one machine)
- Need to set $s \leq r$, choose $s = r^{2/3} = n^{2\delta/3}$.

 $O(n^{\delta/3})$ regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

$$O(r/s)$$
 regions $O\left(\frac{ns}{r}\right)$ edges / region $O\left(\frac{n\sqrt{s}}{r}\right)$ edges / boundary

- Need to set $r \leq S = n^{\delta}$ in order to compute planar *s*-division (on one machine)
- Need to set $s \leq r$, choose $s = r^{2/3} = n^{2\delta/3}$.

 $O(n^{\delta/3})$ regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges \rightarrow Graph with $O(n^{1-\delta/3})$ edges.

$$O(r/s)$$
 regions $O\left(\frac{ns}{r}\right)$ edges / region $O\left(\frac{n\sqrt{s}}{r}\right)$ edges / boundary

- Need to set $r \leq S = n^{\delta}$ in order to compute planar *s*-division (on one machine)
- Need to set $s \leq r$, choose $s = r^{2/3} = n^{2\delta/3}$.

 $O(n^{\delta/3})$ regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

• Recursively redraw each region to get graph proportional to boundary size

Graph with O(n) edges \rightarrow Graph with $O(n^{1-\delta/3})$ edges.

Iterate this until graph is small!
$$O(n^{\delta/3})$$
 regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

• The number of boundary edges is large $O(n^{1-2\delta/3})$

$$O(n^{\delta/3})$$
 regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

• The number of boundary edges is large $O(n^{1-2\delta/3})$

$$O(n^{\delta/3})$$
 regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

- The number of boundary edges is large $O(n^{1-2\delta/3})$
 - Solution: Return on multiple machines

$$O(n^{\delta/3})$$
 regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

- The number of boundary edges is large $O(n^{1-2\delta/3})$
 - Solution: Return on multiple machines
- Base case?

$$O(n^{\delta/3})$$
 regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

- The number of boundary edges is large $O(n^{1-2\delta/3})$
 - Solution: Return on multiple machines
- Base case?
 - Solution: Graph drawing!

$$O(n^{\delta/3})$$
 regions $O\left(n^{1-\delta/3}
ight)$ edges / region $O\left(n^{1-2\delta/3}
ight)$ edges / boundary

- The number of boundary edges is large $O(n^{1-2\delta/3})$
 - Solution: Return on multiple machines
- Base case?
 - Solution: Graph drawing!
- Precision issues?

 $O(n^{\delta/3})$ regions $O(n^{1-\delta/3})$ edges / region $O(n^{1-2\delta/3})$ edges / boundary

The boundary of a region is a complex polygon of size $O(n^{\delta/3})$ with O(1) holes

Technical issues (cont.)

$O(n^{\delta/3})$ regions $O\left(n^{1-\delta/3} ight)$ edges / region $O\left(n^{1-2\delta/3} ight)$ edges / boundary

The boundary of a region is a complex polygon of size $O(n^{\delta/3})$ with O(1) holes

• Connecting two points may need $O(n^{\delta/3})$ bends VERY BAD!

 $O(n^{\delta/3})$ regions $O(n^{1-\delta/3})$ edges / region $O(n^{1-2\delta/3})$ edges / boundary

The boundary of a region is a complex polygon of size $O(n^{\delta/3})$ with O(1) holes

- Connecting two points may need $O(n^{\delta/3})$ bends VERY BAD!
- Solution: Draw subproblem in a triangle w/ triangular holes

Technical issues (cont.)

 $O(n^{\delta/3})$ regions $O(n^{1-\delta/3})$ edges / region $O(n^{1-2\delta/3})$ edges / boundary

The boundary of a region is a complex polygon of size $O(n^{\delta/3})$ with O(1) holes

- Connecting two points may need $O(n^{\delta/3})$ bends VERY BAD!
- Solution: Draw subproblem in a triangle w/ triangular holes

Advantages of triangular boundaries

We need to join these triangles together.

Subdivision may have nested holes (can be nested $O(n^{\delta/3})$ deep).

Technical issues in the gluing step (cont.)

We need to join these triangles together.

Subdivision may have nested holes (can be nested $O(n^{\delta/3})$ deep).

• Need to join boundaries of adjacent subproblems together in parallel.

Technical issues in the gluing step (cont.)

We need to join these triangles together.

Subdivision may have nested holes (can be nested $O(n^{\delta/3})$ deep).

• Need to join boundaries of adjacent subproblems together in parallel.

We need to join these triangles together.

Subdivision may have nested holes (can be nested $O(n^{\delta/3})$ deep).

- Need to join boundaries of adjacent subproblems together in parallel.
- Solution: Parallel routing technique + a scaffold graph.

Routing between curves in parallel

Routing between curves in parallel

Scaffold construction

The scaffold has size $O(n^{\delta/3}) < S$ so can be stored (and drawn) by all machines!

The scaffold has size $O(n^{\delta/3}) < S$ so can be stored (and drawn) by all machines!

Faces are no longer triangles!

Inside and outside scaffolding

Application to problems

• Connected components - keep track of components, replace with tree

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)
- Euclidean MST MST in Delaunay triangulation (O(1) rounds by [ANOY14])

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)
- Euclidean MST MST in Delaunay triangulation (O(1) rounds by [ANOY14])
- $(1 + \varepsilon)$ -approx SSSP replace with ε -emulator of Chang et al. [CKT22].

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)
- Euclidean MST MST in Delaunay triangulation (O(1) rounds by [ANOY14])
- $(1 + \varepsilon)$ -approx SSSP replace with ε -emulator of Chang et al. [CKT22].
- $(1 + \varepsilon)$ -approx **APSP** Similar to SSSP

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)
- Euclidean MST MST in Delaunay triangulation (O(1) rounds by [ANOY14])
- $(1 + \varepsilon)$ -approx SSSP replace with ε -emulator of Chang et al. [CKT22].
- $(1 + \varepsilon)$ -approx **APSP** Similar to SSSP
- $(1 + \varepsilon)$ -approx weighted edit distance DP is SSSP in a grid-like graph

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)
- Euclidean MST MST in Delaunay triangulation (O(1) rounds by [ANOY14])
- $(1 + \varepsilon)$ -approx SSSP replace with ε -emulator of Chang et al. [CKT22].
- $(1 + \varepsilon)$ -approx **APSP** Similar to SSSP
- $(1 + \varepsilon)$ -approx weighted edit distance DP is SSSP in a grid-like graph
- (1 + ε)-approx shortest cycle recursive solution + recurse on ε -emulators

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)
- Euclidean MST MST in Delaunay triangulation (O(1) rounds by [ANOY14])
- $(1 + \varepsilon)$ -approx SSSP replace with ε -emulator of Chang et al. [CKT22].
- $(1 + \varepsilon)$ -approx **APSP** Similar to SSSP
- $(1 + \varepsilon)$ -approx weighted edit distance DP is SSSP in a grid-like graph
- (1 + ε)-approx shortest cycle recursive solution + recurse on ε -emulators
- $(1 + \varepsilon)$ -approx flow/cut shortest cycle + planar graph duality

- Connected components keep track of components, replace with tree
- **MST** replace with MST of subgraph (contract non-boundary)
- Euclidean MST MST in Delaunay triangulation (O(1) rounds by [ANOY14])
- $(1 + \varepsilon)$ -approx SSSP replace with ε -emulator of Chang et al. [CKT22].
- $(1 + \varepsilon)$ -approx **APSP** Similar to SSSP
- $(1 + \varepsilon)$ -approx weighted edit distance DP is SSSP in a grid-like graph
- (1 + ε)-approx shortest cycle recursive solution + recurse on ε -emulators
- $(1 + \varepsilon)$ -approx flow/cut shortest cycle + planar graph duality

• EMST in higher dimensions?

• EMST in higher dimensions? (O(1)-approx in $O(\log \log n)$ [JMNZ23]

- EMST in higher dimensions? (O(1)-approx in $O(\log \log n)$ [JMNZ23]
- Approximate diameter and radius?

- EMST in higher dimensions? (O(1)-approx in $O(\log \log n)$ [JMNZ23]
- Approximate diameter and radius?
- Exact solutions to distance-based problems?

- EMST in higher dimensions? (O(1)-approx in $O(\log \log n)$ [JMNZ23]
- Approximate diameter and radius?
- Exact solutions to distance-based problems?
- Geometric intersection graphs?

- EMST in higher dimensions? (O(1)-approx in $O(\log \log n)$ [JMNZ23]
- Approximate diameter and radius?
- Exact solutions to distance-based problems?
- Geometric intersection graphs?
- Planarity testing and graph drawing?

Thank you for listening

References

Massively parallel algorithms for high-dimensional euclidean minimum spanning tree.

CoRR, abs/2308.00503, 2023.